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Key Takeaways 

 

▪ A neural network forms a prediction by estimating many parameters from a dataset and 
applying layers of linear combinations and nonlinear transformations defined by those 
parameters to input variables. 

 

▪ Relevance-based prediction forms a prediction as a weighted average of observed 
outcomes in which the weights are determined by theoretically justified principles and 
applied to many combinations of variables and observations one prediction at a time. 

  

▪ Evidence suggests that relevance-based prediction gives more effective predictions of 
stock market volatility than neural networks, and it does so in a way that is easy to 
implement and fully transparent.  
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Abstract 

Many prediction tasks in economics and finance involve complicated relationships that lie 

beyond the reach of linear regression analysis.  Neural networks can capture these complex 

dynamics, but they are notoriously opaque and difficult to implement.  We show that an 

alternative model-free prediction method, called relevance-based prediction, captures many of 

the same complex dynamics as neural networks, but with transparency into how each 

observation contributes to each prediction and how each predictive variable contributes to the 

reliability of each prediction.  The authors describe both prediction methods and compare their 

respective efficacy for predicting stock market volatility.  
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A TRANSPARENT ALTERNATIVE TO NEURAL NETWORKS 

WITH AN APPLICATION TO PREDICTING VOLATILITY 

 

The successful application of policy and strategy by government officials and investment 

professionals requires the ability to predict outcomes of key variables given observations of the 

economy and financial markets.  The most common tool for forming predictions from data is 

linear regression analysis which was invented by Carl Friedrich Gauss circa 1795 to predict 

astronomical motion.  However, the forces that govern the motion of planets and stars are 

much more stable than those that influence human behavior; therefore, many prediction tasks 

in economics and finance lie beyond the reach of linear regression analysis.   

 Many researchers have, therefore, turned to neural networks to address the complex 

dynamics of economic and financial data.  However, a neural network is difficult to implement 

and notoriously opaque.  An alternative prediction method called relevance-based prediction, 

hereafter referred to as RBP, addresses the same complex dynamics as neural networks but in a 

way that is easier to implement and transparent.  To appreciate the fundamental differences 

between these alternative prediction methods, we highlight some of their key features before 

we describe each approach in detail. 
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Features of Neural Networks 

▪ Neutral networks are models.  They discard the data used to train them and only retain 

the derived parameters which they use for all prediction tasks.   

▪ Neutral network parameters are derived empirically.   

▪ Because neutral networks discard the original data, it is impossible to observe the effect 

of an observation on a prediction.   

▪ Because a neural network’s internal calculation logic relies on large quantities of 

complex transformations, the interim outputs of each calculation leading to the 

prediction are difficult if not impossible to interpret.   

▪ Neutral networks reveal nothing about the reliability of a prediction until the outcome is 

observed.   

▪ Neutral networks estimate as many parameters as necessary to model the complexity.   

Features of RBP 

▪ RBP is a model-free prediction routine that retains the original data and adapts the 

selection of observations and predictive variables to each prediction task.   

▪ RBP selects the observations and predictive variables based on theoretically justified 

principles.   

▪ RBP explicitly reveals the effect of each observation on the prediction. 

▪ RBP quantifies how each predictive variable contributes to the reliability of a prediction. 

▪ RBP reveals the reliability of a prediction before it is made. 

▪ RBP considers as many combinations of observations and variables as necessary to 

address complexity.  
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We next describe neutral networks in detail. 

 

Neural Network  

A Neutral network is a type of prediction model.  The general feature of a model-based approach 

to prediction is that it forms a prediction �̂�𝑡 = 𝑓(𝑥𝑡|Θ) for a task 𝑥𝑡 by mathematically 

transforming the values of the input vector according to a prespecified set of rules 𝑓 that rely on 

a prespecified vector of parameters Θ.  Rather than choose Θ arbitrarily, it is common to use 

historical observations for the outcomes 𝑌 and predictive variables 𝑋 to choose the parameters 

Θ̂ = 𝒜(𝑌, 𝑋, 𝑓|Λ).   

The function 𝒜 is often called a model training algorithm, and it depends on a 

prespecified vector of hyperparameters Λ which govern the training process.  Rather than 

choose Λ arbitrarily, it is common to use historical observations to choose the hyperparameters 

Λ̂ = ℋ(𝑌, 𝑋, 𝒜|Ξ) based on a prespecified set of choices Ξ.  The process ℋ often separates 

observations of 𝑌 and 𝑋 into subsets of training and validation samples called folds and 

evaluates the average efficacy of the choices for Λ, which is called cross-validation.1   

  The training process 𝒜 identifies one set of parameters to use for all prediction tasks, 

and the cross-validation process ℋ identifies one set of hyperparameters based on average 

efficacy across folds.  The training process typically applies gradient descent or another iterative 

optimization algorithm to change model parameters with the goal of minimizing a chosen 

function of the model’s prediction error, which is called the loss function.  One training iteration 

across all eligible training observations is called an epoch.  The training process iterates through 
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multiple epochs and the cross-validation process iterates through folds.  Once the full training 

and validation process is complete, the model forms predictions based solely on the final 

parameters as �̂�𝑡 = 𝑓(𝑥𝑡|Θ̂). 

Neural networks refer to a class of models �̂�𝑡 = 𝑓𝑁𝑁(𝑥𝑡|Θ) that apply sequences of 

linear combinations and nonlinear transformations of input variables 𝑥𝑡 to make a prediction.  

The calculation logic can be viewed as a connected network of a chosen number of nodes 

arranged in a chosen number of layers.  Each node corresponds to a set of weights and a 

constant term, called a bias, that govern how it operates.  The total collection of weights and 

bias terms comprise the parameters of the neural network which are initialized randomly before 

training and are refined throughout the training process.  Given a set of values for the 

parameters, the neural network uses the corresponding weights and bias terms associated with 

each node in the first calculation layer to compute a linear combination for that node.  Each 

node then transforms its linear combination into an input for the next layer of the network 

using a chosen nonlinear function.  The network may have any number of subsequent layers 

that perform the same operations, eventually culminating in a single number as output in the 

final layer.2  The model’s parameters include the weights and biases associated with every node.   

One appealing feature of neutral networks is that they are universal approximators, which 

means that in a highly general setting they have the capacity to approximate any functional 

relationship to within any degree of precision if they have enough nodes in the network.3  

Therefore, if a sufficiently large neural network is trained properly for enough epochs, it will 

achieve zero or near-zero errors for prediction tasks in the training sample.  However, for 

processes that are especially noisy, it may be unwise to overfit the training data too closely 
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because extrapolations from noise are harmful for predictions outside the training sample.4  We 

can instead stop the training process at an earlier epoch.   

Rather than choose the number of epochs arbitrarily, cross-validation guides the 

decision.  For a given validation fold, we apply parameter training via backpropagation to the 

fold’s training subsample for one epoch and then use the resulting model parameters to predict 

each task in the fold’s validation sample.  We record the average validation loss of these 

predictions, typically measured as the mean squared error, and repeat epochs until the 

validation loss fails to improve the mean squared error for a chosen number of epochs, at which 

point we select the parameters from the loss-minimizing epoch.  This process is called early 

stopping.  The number of further epochs to consider at each juncture is called the patience 

hyperparameter.  We compute the validation loss for each combination of the hyperparameters 

for learning rate and patience and record the learning rate and number of epochs used in the 

minimum loss case.  We repeat this process for all folds and record the average optimal learning 

rate and number of epochs.  Finally, we use these values of the hyperparameters to train the 

model on the full sample of available training observations, and we record the optimal model 

parameters which are used thereafter for prediction.5   

To promote clarity, it may be instructive to describe the explicit steps we employed to 

construct the neural network models used for our analysis. 

Construction of a Neural Network 

1. Specify model  

a. Predictive variables 
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b. Number of layers 

c. Number of nodes 

d. Non-linear transformation (activation) function 

2. Specify training process 

a. Folds 

b. Candidate values for hyperparameters 

3. Select initial values of hyperparameters  

a. Learning rate 

b. Patience 

4. For the initial prediction of the first observation in the training sample of the first fold, 

choose a matrix of random weights to apply to the predictive variables; that is, a weight 

for each variable for the first node in the first hidden layer, a different weight for each 

variable for the second node in the first hidden layer, and so on to create a weight 

matrix.  Add a bias term for each node.   

5. Multiply the variable input vector by the weight matrix and add the bias terms to get the 

intermediate values of the nodes in the first hidden layer.   

6. Apply the nonlinear transformation function to the intermediate values of the nodes in 

the first hidden layer to get the final values of the nodes in the first hidden layer.  These 

final values serve as substitutes for the original variable values in subsequent 

calculations.   

7. Repeat steps 4 through 6 to implement additional hidden layers.  
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8. Calculate the initial prediction as a linear combination of an additional vector of random 

weights applied to the final values of the nodes in the final hidden layer to get a 

prediction. 

9. Calculate the prediction error by subtracting the prediction from the observed value of 

the outcome. 

10. Compute the gradient (vector of derivatives) of the error with respect to the parameters 

(weights and bias terms) given the nonlinear transformation function and apply it to 

update the parameter values based on the chosen learning rate.6  This process is called 

backpropagation.   

11. For the second observation, repeat steps 4 through 10, but rather than introduce new 

random parameters, use the final parameters from the prior observation.   

12. For all remaining observations, repeat step 11.   

13. Repeat steps 4 through 12 for each fold.   

14. Based on the validation sample of each fold, calculate the mean squared errors of 

predictions for all the folds and record their average for the first epoch.   

15. Repeat steps 4 through 14 until the average of the average mean squared error fails to 

reach a new minimum for a chosen number of consecutive epochs, which is the 

patience hyperparameter.   

16. Repeat steps 4 through 15 for every combination of hyperparameters.   

17. Find the combination of hyperparameters with the minimum average mean squared 

error.   
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18. Now using the full sample of observations, repeat steps 4 through 15 with the learning 

rate from the epoch with the lowest average mean squared error, together with the 

number of epochs with the lowest average mean squared error, to estimate the full-

sample parameters.   

19. Form a prediction from the parameters generated from step 18.   

This description of the process for constructing a neural network reveals the many 

nuances and loops that go into a neural network, and it highlights the opacity of the mechanism 

that translates the original variables and parameters into a prediction.   

We now turn to RBP, which addresses the complex dynamics of economic and financial 

data in a way that is easier to implement and fully transparent. 

 

Relevance-Based Prediction 

As comprehensively described by Czasonis, Kritzman, and Turkington (2024), RBP is a model-

free prediction routine that forms a prediction as a weighted average of prior observations.  

The weights for a given prediction task are determined by a principled approach that considers 

the statistical relevance of each observation to the prediction task and relies on different 

subsamples of observations and variables based on their relative merit for the task.  Unlike a 

model-based approach, such as a neural network, RBP does not have parameters that apply to 

every prediction task.  Instead, it considers the observations for 𝑌 and 𝑋 separately for 

individual prediction tasks.   
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RBP addresses complexities in data by selectively censoring the observations and 

variables that inform a prediction.  These choices are codependent, because the choice of 

observations affects the efficacy of the variables, and the choice of variables affects the efficacy 

of the observations.  Therefore, RBP constructs a grid of combinations of variables (columns) 

and observations (rows).  Each cell in the grid has a set of prediction weights, a prediction, and a 

measure of reliability.  The composite grid prediction is simply the reliability-weighted average 

of the predictions from all the cells.  RBP avoids overfitting because the measure of reliability for 

each grid cell inherently penalizes small samples of observations and small subsets of variables 

which are generally more likely to produce spurious relationships than larger samples and 

subsets.   

 In addition to the notion of codependence discussed above, the key features of RBP are 

relevance, which determines the weight of observations for a prediction, and fit, which 

determines the reliability of a given prediction.   

A typical grid specification includes every subset of predictive variables combined with 

multiple observation censoring thresholds.  For a given cell, which corresponds to a specific set 

of predictive variables 𝑋 and a censoring threshold 𝑟∗, we form prediction weights for each 

observation 𝑥𝑖  based exclusively on 𝑋 and the prediction task 𝑥𝑡, as follows.   

𝑤𝑖𝑡𝜃 =
1

𝑁
+

𝜆2

𝑛−1
(𝛿(𝑟𝑖𝑡)𝑟𝑖𝑡 − 𝜑�̅�𝑠𝑢𝑏)    (1) 

 Equation 1 is based on the statistical relevance 𝑟𝑖𝑡 of each observation 𝑥𝑖  to the 

prediction task 𝑥𝑡.  The derived quantities involving relevance are defined as follows.  We use 
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the Mahalanobis distance to measure the two key components of relevance: similarity and 

informativeness.   

𝑟𝑖𝑡 = 𝑠𝑖𝑚(𝑥𝑖, 𝑥𝑡) +
1

2
(𝑖𝑛𝑓𝑜(𝑥𝑖, �̅�) + 𝑖𝑛𝑓𝑜(𝑥𝑡, �̅�))   (2) 

𝑠𝑖𝑚(𝑥𝑖 , 𝑥𝑡) = −
1

2
(𝑥𝑖 − 𝑥𝑡)Ω−1(𝑥𝑖 − 𝑥𝑡)′   (3) 

𝑖𝑛𝑓𝑜(𝑥𝑖, �̅�) = (𝑥𝑖 − �̅�)Ω−1(𝑥𝑖 − �̅�)′    (4) 

𝑖𝑛𝑓𝑜(𝑥𝑡, �̅�) = (𝑥𝑡 − �̅�)Ω−1(𝑥𝑡 − �̅�)′    (5) 

 An observation censoring function 𝛿(𝑟𝑖𝑡) determines the censored and retained 

observations.   

𝛿(𝑟𝑖𝑡) = {
1    𝑖𝑓 𝑟𝑖𝑡 ≥ 𝑟∗

0    𝑖𝑓 𝑟𝑖𝑡 < 𝑟∗     (6) 

𝑛 = ∑ 𝛿(𝑟𝑖𝑡)𝑁
𝑖=1      (7) 

𝜑 = 𝑛/𝑁     (8) 

�̅�𝑠𝑢𝑏 =
1

𝑛
∑ 𝛿(𝑟𝑖𝑡)𝑟𝑖𝑡

𝑁
𝑖=1       (9) 

𝜆2 =
𝜎𝑟,𝑓𝑢𝑙𝑙

2

𝜎𝑟,𝑝𝑎𝑟𝑡𝑖𝑎𝑙
2 =

1

𝑁−1
∑ 𝑟𝑖𝑡

2𝑁
𝑖=1

1

𝑛−1
∑ 𝛿(𝑟𝑖𝑡)𝑟𝑖𝑡

2𝑁
𝑖=1

    (10) 

We express Equation 1 in terms of the quantities defined above because these 

components provide intuition for the formula.  The uninformed baseline for weights is 1/𝑁, 

and weights are tilted higher or lower based on the statistical relevance of the retained 

observations.  The relevance-based tilts subtract the average relevance for the retained 
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observations so that they are centered on zero, and they are scaled by 𝜆2 to properly 

extrapolate from the subsample of retained observations.   

The prediction for grid cell 𝜃 is the weighted average of outcomes using Equation 1.   

�̂�𝑡𝜃 = ∑ 𝑤𝑖𝑡𝜃𝑦𝑖
𝑁
𝑖=1      (11) 

 We define adjusted fit as follows, where 𝐾 is the number of variables in 𝑋.  Adjusted fit 

provides a measure of expected reliability for each grid cell’s prediction.   

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝑡𝜃 = 𝐾(𝑓𝑖𝑡𝑡 + 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑡)   (12) 

𝑓𝑖𝑡𝑡𝜃 = 𝜌(𝑤𝑡𝜃 , 𝑦)2     (13) 

𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑡𝜃 =
1

2
(𝜌(𝑤𝑡

(+)
, 𝑦) − 𝜌(𝑤𝑡

(−)
, 𝑦))

2

                  (14) 

 In Equation 14, 𝑤𝑡
(+)

 represents the weights formed from retained observations while 

𝑤𝑡
(−)

 represents the weights formed from the complementary set of censored observations.  Fit 

inherently penalizes small samples because weights close to zero dampen the correlation 

between weights and outcomes.  Multiplication by 𝐾 inherently penalizes small subsets of 

variables which are more likely to exhibit spurious relationships.  Asymmetry is a positive 

contributor to adjusted fit because in the presence of asymmetry we should trust the retained 

relevant observations more than the censored less relevant observations on principle.   

The total prediction weights for task 𝑡 are computed as a grid-weighted average of the 

observation weights from all the cells.   

𝜓𝜃 =
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝑡𝜃

∑ 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝑡�̃��̃�

     (15) 
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𝑤𝑖𝑡,𝑔𝑟𝑖𝑑 = ∑ 𝜓𝜃𝑤𝑖𝑡,𝜃𝜃      (16) 

We compute the total predictions for task 𝑡 and its corresponding fit the same way we 

do for a single grid cell, using Equation 16.   

�̂�𝑡,𝑔𝑟𝑖𝑑 = ∑ 𝑤𝑖𝑡,𝑔𝑟𝑖𝑑𝑦𝑖
𝑁
𝑖=1     (17) 

𝑓𝑖𝑡𝑡,𝑔𝑟𝑖𝑑 = 𝜌(𝑤𝑡,𝑔𝑟𝑖𝑑, 𝑦)
2
    (18) 

 

We now summarize the explicit steps for constructing a relevance-based prediction.   

1. For a given prediction task, calculate the relevance of each observation to the prediction 

based on the full sample of observations.  

2. For a given combination of predictive variables and a relevance-filtered subsample of 

observations, form a prediction as a weighted average of observed outcomes in which 

the weights are based on relevance. 

3. Calculate the adjusted fit of the prediction. 

4. Repeat steps 2 and 3 for all chosen combinations of predictive variables and chosen 

subsamples of relevance-filtered observations. 

5. Form a composite prediction as a reliability-weighted average of all the predictions from 

the different combinations of predictive variables and subsamples of observations.  
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Theoretical Foundations of Relevance-Based Prediction 

Unlike neural networks, which rely exclusively on sample-specific empirical validation, RBP is 

justified by theory and further supported by surprising mathematical equivalences.   

▪ Information theory and the Mahalanobis distance.  Information theory shows that the 

information contained in an observation is the negative logarithm of its likelihood.  The 

Central Limit Theorem shows that the probability of an observation from a multivariate 

normal distribution is proportional to the exponential of a negative Mahalanobis 

distance.  Thus, the information given by an observation from a multivariate normal 

distribution is proportional to a Mahalanobis distance (see Czasonis, Kritzman, and 

Turkington 2022b).   

▪ Convergence of RBP to linear regression analysis.  When RBP uses all the predictive 

variables and is applied across all observations, it gives the same prediction as linear 

regression analysis (see Czasonis, Kritzman, and Turkington 2022b).   

▪ Convergence of fit to R-squared.  For a full-sample linear regression analysis, the 

informativeness-weighted average fit across all prediction tasks equals R-squared (see 

Czasonis, Kritzman, and Turkington 2022b).   

 

Predicting Volatility 

We test both neural networks and RBP for predicting the volatility of the stock market.  For 

context, we also show results for linear regression analysis.   
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Data and Methodology 

The outcome we aim to predict is the subsequent one quarter (63-day) volatility of daily total 

returns of the S&P 500 index.  We use 14 predictive variables as described in Exhibit 1, which 

are observed at the time of each prediction.7  

Exhibit 1: Predictive Variables 

 

We set up our out-of-sample historical test as follows.  Starting on December 31, 1999, 

we obtain a sample of monthly observations for outcomes and predictive variables from 

January 1986 to September 1999.  We end in September to account for the subsequent  

three-month period corresponding to the final volatility outcome in our input data.  We train a 

neural network for this sample following the process described earlier and store the parameters 

and prediction function for that model.  We then use the neural network to generate a 

prediction for the daily volatility of the S&P 500 for the first three-month period of the year 

2000.  We also use the RBP process described earlier to generate a prediction for the same 

Predictive Variable Proxy Source

Market Conditions

Trailing 1-month volatility Trailing 21-day volatility of daily S&P 500 returns Bloomberg

Trailing 3-month volatility Trailing 63-day volatility of daily S&P 500 returns Bloomberg

Implied volatility CBOE VIX (with proxy based on options prices before 1990) CBOE

Trailing 1-month market return Trailing 21-day return of the S&P 500 Bloomberg

Trailing 3-month market return Trailing 63-day return of the S&P 500 Bloomberg

Financial Conditions

Short-term interest rate (level) Fed funds rate: 12-m average FRED

Short-term interest rate (change) 1-year change in short term interest rate FRED

Long-term interest rate (change) 1-year change in 10y constant maturity rate FRED

Credit spread (change) 1-year change in Baa corp. bond yield - 10y const. maturity rate FRED

Economic Conditions

Growth 1-year % change in industrial production FRED

Payrolls 1-year % change in non-farm payrolls FRED

Inflation 1-year % change in Consumer Price Index (CPI) FRED

Money supply 3-year % change in M2 money supply FRED

Debt-to-GDP 3-year change in public debt / GDP FRED
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outcome using the same input data.  Next, we move forward one month to January 31, 2000 

and generate predictions for the three-month period forward from that date.  The prediction 

task is updated to reflect conditions as of January 31, but the data from which the prediction is 

formed for both the neural network and RBP remains as before.  We proceed in this fashion, 

forming predictions each month from December 31, 1999 through December 31, 2004.  At this 

point, we augment the available training sample to span January 1986 to September 2004, 

recalibrate the neural network model on the new data, and allow RBP to use the same 

augmented data sample.  We proceed in this fashion, updating the available data sample for 

both prediction routines every five years until the final prediction is made on September 30, 

2023.   

 Additional neural network specifications are as follows. 

Activation function: Logistic sigmoid, 𝜙(𝑎) = (1 + 𝑒−𝑎)−1 

Structures (all fully connected from one layer to the next): 

▪ 1 hidden layer, 1,000 nodes 

▪ 1 hidden layer, 100 nodes 

▪ 10 hidden layers, 100 nodes per layer 

▪ 10 hidden layers, 10 nodes per layer 

Training and Cross-validation  

▪ 5 folds of equal size sequential time blocks8 

▪ Candidate initial learning rates: 0.0005, 0.0075, 0.001, 0.00125, 0.00159 

▪ Candidate patience parameters (for early stopping): 
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o For shallow (1 hidden layer) structures: 2 through 20 in increments of 2 

o For deep (10 hidden layer) structures: 50 through 200 in increments of 25  

▪ Minimum epochs (before early stopping is allowed):10 

o For shallow structures: 100 

o For deep structures: 1,000  

For RBP, we consider a grid consisting of every possible variable combination (grid 

columns) and observation censoring percentile thresholds of 0, 0.2, 0.5 and 0.8 (grid rows).  We 

consider censoring based on relevance as well as censoring based on similarity, which 

essentially multiplies the number of grid cells by two.  Similarity censoring may be useful if 

nearby observations alone – and not those observations that are also the most informative – 

are the best predictors for a given prediction task.  We allow RBP to consider both possibilities.  

Note that the cells that use censoring thresholds of zero are equivalent to linear regression 

predictions for a given set of predictive variables.  There are more than 16,000 grid cells; 

however, we use a sparse sampling method whereby for each prediction we consider the full 

sample linear cell, each of the 14 single variable linear cells, and 100 randomly selected cells 

from the rest of the grid, for a total of 115 cells for each prediction task.   

Results 

Our purpose in carrying out this analysis was not to pass judgment on the best model or routine 

for predicting volatility but rather to determine if RBP could serve as a reliable substitute for 

neural networks when faced with complex data.  The following exhibits give a decisive 

affirmative response to this question. 
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 Exhibit 1 compares linear regression analysis, RBP, and four neural network models that 

differ only by their number of layers and nodes.  It shows the actual results for outcomes that 

were predicted to be high and for outcomes that were predicted to be low.  We define high 

predictions as those above the 75th percentile and low predictions as those below the 25th 

percentile.11  We further partitioned the RBP results into the 50% most reliable predictions and 

the 50% least reliable predictions as indicated by fit.  The results reveal that both RBP and the 

neural network models distinguished high volatility outcomes from low volatility outcomes 

more accurately than linear regression analysis, indicating that the relationship between 

volatility and the predictive variables is nonlinear.  Exhibit 1 also shows that the full sample of 

predictions generated by RBP performed as well as the most successful neural network model, 

as indicated by the spread between the outcomes of high and low predictions.  However, the 

RBP predictions known in advance to be the 50% most reliable predictions performed 

considerably better than the most successful neural network model.   

Exhibit 1: Predictions of 1 Quarter Daily S&P 500 Volatility 

Average Out-of-Sample Outcomes  

 

 Exhibit 2 shows the correlations of the outcomes with the predictions as well as the 

correlations of the predictions with each other.  In this exhibit we considered the full sample of 

RBP predictions.  Exhibit 2 reveals that the best neural network model (10 layers, 100 nodes) 

was most highly correlated with the actual outcomes (54%), but that RBP was nearly as highly 

correlated (52%), even though the less reliable predictions were included along with the more 

All High Fit Low Fit 1L of 1,000N 1L of 100N 10L of 100N 10L of 10N

Low Predictions 0.87% 0.70% 0.67% 0.73% 0.76% 0.84% 0.71% 0.77%

High Predictions 1.34% 1.45% 1.66% 1.24% 1.32% 1.33% 1.47% 1.43%

High / Low 1.5 2.1 2.5 1.7 1.7 1.6 2.1 1.9

Neural NetworkRBP
LR
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reliable predictions to calculate this correlation.  It is also interesting to note that the 

predictions from linear regression analysis were highly correlated with the two single-layer 

neural network models, suggesting that the deeper models are better at capturing 

nonlinearities in the data. The RBP predictions, by contrast, were 87% correlated with the 

predictions of the best neural network model, which is one of the deeper models.  

Exhibit 2: Correlations 

 

 Exhibit 3 offers further evidence that RBP has the potential to serve as an effective 

substitute for neural networks.  First, we should note that the average value of the predictions 

and their standard deviations merely indicate that the predictions are reasonable on average.  

They do not convey information about the quality of the individual predictions.  The root mean 

squared errors show that the RBP predictions were more reliable than three of the four neural 

network models and nearly as reliable as the best neural network model, even when the less 

reliable predictions were included.  However, the subset of the 50% most reliable RBP 

predictions had a lower root mean squared error than even the best neural network model.  

The final row of Exhibit 3 shows the same correlations of the predictions and outcomes as the 

first column of Exhibit 2 but with the addition of the correlation of the 50% most reliable RBP 

Actual LR RBP 1L of 1,000N 1L of 100N 10L of 100N 10L of 10N

Actual 1.00

Linear 0.34 1.00

RBP 0.52 0.78 1.00

NN - 1L of 1,000N 0.33 0.85 0.78 1.00

NN - 1L of 100N 0.33 0.92 0.66 0.82 1.00

NN - 10L of 100N 0.54 0.69 0.87 0.73 0.65 1.00

NN - 10L of 10N 0.45 0.81 0.77 0.78 0.77 0.90 1.00

Neural Networks
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predictions and outcomes.  This subset of reliable predictions was significantly more highly 

correlated (0.66) with outcomes than even the best neural network model (0.54). 

Exhibit 3: Prediction Statistics 

 

The Virtue of Transparency 

The foregoing exhibits offer tantalizing evidence that RBP has the potential to address complex 

dynamics as effectively as neural networks.  Moreover, as we mentioned previously, RBP has 

two major advantages over neural networks: its ease of implementation and its transparency.  

RBP’s relative ease of implementation should be apparent from our earlier descriptions of the 

processes we employed to construct both prediction methods.   

Exhibits 4 and 5 illustrate the transparency of RBP.  Exhibit 4 shows the three most 

relevant and least relevant observations for two predictions of volatility, the quarter following 

January 31, 2008, during the midst of the Global Financial Crisis, and the quarter following June 

30, 2014, when VIX was near an all-time low following a five-year bull market.  The most 

relevant observations for the January 2008 prediction of volatility included the 1987 portfolio 

insurance-induced stock market crash and the 1990 stock market crash following Iraq’s invasion 

of Kuwait, while the three least relevant observations, which received negative weights, were 

extraordinarily quiescent periods.  The most relevant observations for the June 2014 volatility 

prediction were similarly calm periods, while the three least relevant observations were highly 

Actual LR All High Fit 1L of 1,000N 1L of 100N 10L of 100N 10L of 10N

Average 1.1% 1.0% 1.0% 1.0% 1.1% 1.0% 1.0% 1.0%

Standard deviation 0.6% 0.3% 0.4% 0.5% 0.5% 0.4% 0.3% 0.2%

Root mean squared error 0.60% 0.54% 0.50% 0.63% 0.61% 0.53% 0.56%

Correlation to actual 0.34 0.52 0.66 0.33 0.33 0.54 0.45

Neural NetworksRBP
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turbulent periods.  Interestingly, one of the most relevant observations for the January 2008 

prediction was one of the least relevant observations for the June 2014 prediction. 

Exhibit 4: January 2008 and June 2014 Predictions  
Most and Least Relevant Observations 

 
 

Exhibit 5 shows the importance of the predictive variables to the same two predictions 

highlighted in Exhibit 4.  Blue cells convey more importance while red cells convey less 

importance.  Variable importance is calculated as the average adjusted fit of the grid cells that 

include a given variable minus the average adjusted fit of the grid cells that do not include that 

variable.12  It shows that implied volatility was most important to both predictions, as we should 

expect if we trust the wisdom of crowds, but that the other variables had varying degrees of 

importance.  Trailing one-month market return, which was only minimally important for 

predicting the January 2008 prediction, was the second most important variable for predicting 

the June 2014 outcome, which is not surprising given that this outcome followed a five-year bull 

market.   

 

Prediction 1.3% Oct-87 Oct-90 Nov-87 Mar-95 Aug-94 Feb-95

Fit 11.4% Weight 5.0% 3.0% 3.0% -0.1% -0.1% -0.2%

Actual 1.4% Actual 1.9% 1.0% 1.7% 0.5% 0.7% 0.5%

Prediction 0.6% Sep-04 Jul-04 Jun-04 Nov-08 Oct-87 Oct-08

Fit 19.9% Weight 2.3% 2.0% 2.0% -0.5% -0.6% -0.7%

Actual 0.6% Actual 0.7% 0.7% 0.7% 2.6% 1.9% 3.3%

January 2008 Most Relevant Least Relevant

June 2014 Most Relevant Least Relevant
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Exhibit 5: Variable Importance 

 

 RBP’s ability to give visibility into how the observations contribute to the formation of a 

prediction is critical to assessing a prediction’s reliability.  Even though fit gives a preview of a 

prediction’s reliability, it does so based only on data.  It could be the case, for example, that a 

highly relevant observation is a data error or that it should be discounted for some other 

reason.  An unusual prediction might draw scrutiny and lead us to examine the observations 

that are most relevant to its formation, which might help us discover the data error or identify 

the other reason to discount the observation.  It is only because RBP is transparent that this 

scrutiny is possible.  Neural networks, by contrast, thoroughly obscure all information about the 

effect of observations on a prediction.  

 

Conclusion 

Neural networks form predictions from data with complex dynamics.  By performing many 

sequences of linear combinations and nonlinear transformations of the original inputs and by 

January 2008 June 2014

Trailing 1-month volatil ity 0.08 0.20

Trailing 3-month volatil ity 0.18 0.09

Implied volatil ity 0.33 0.40

Trailing 1-month market return 0.15 0.36

Trailing 3-month market return 0.15 0.10

Short-term interest rate (level) 0.01 0.13

Short-term interest rate (change) 0.11 0.21

Long-term interest rate (change) 0.11 0.22

Credit spread (change) 0.11 0.29

Growth 0.08 0.03

Payrolls 0.12 0.28

Inflation -0.13 0.15

Money supply 0.04 -0.55

Debt-to-GDP 0.19 0.17
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cross validating the results along the way, a neural network has the potential to extract nearly 

all the useful information from a dataset to form a prediction.  And the prediction is likely to be 

highly reliable to the extent the training sample closely represents the circumstances of the 

prediction.  However, if the prediction circumstances are not well represented in the training 

sample, the prediction may not be reliable.  Moreover, if the training data is noisy, there is a 

significant chance of overfitting the neural network, which could compromise the reliability of 

the predictions.  These challenges are exacerbated because a neural network obscures the way 

the observations and predictive variables influence a prediction.  It is, therefore, impossible to 

assess the quality of a prediction from a neural network until the outcome is known, which may 

be too late. 

 RBP also forms predictions from data with complex dynamics, but unlike neural 

networks, it is model free and theoretically grounded.  RBP forms a prediction as a weighted 

average of observed outcomes in which the weights are based on a statistical measure called 

relevance.  Relevance is composed of similarity and informativeness, which are both measured 

as Mahalanobis distances.  RBP also depends on fit which measures the alignment of relevance 

weights and outcomes.  Fit determines how to blend observations and predictive variables to 

give the most reliable prediction, and it gives guidance about the reliability of a prediction 

before it is made.  RBP is remarkably transparent.  It reveals explicitly how each observation 

informs a prediction.  It shows how each predictive variable contributes to the reliability of a 

prediction.  And it discloses the reliability of a prediction before it is made. 

 We applied both prediction methods to predict stock market volatility, along with linear 

regression analysis to provide context.  We considered four specifications of neural network 
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models.  Our results showed that the most successful neural network specification and our RBP 

routine both generated significantly more reliable predictions than linear regression analysis, 

thus warranting their use.  Our results also showed that the most successful neural network 

specification and RBP produced similar predictions that were similarly effective.  It is important 

to note, though, that we would not have known in advance which neural network specification 

would work best. 

 We then illustrated the transparency of RBP by showing the three most and three least 

relevant observations to a chosen prediction of a high outcome and a chosen prediction of a 

low outcome.  We also showed the relative importance of the predictive variables for these two 

predictions. 

 Given the strong theoretical foundation of RBP, along with the results of our empirical 

analysis, we believe that RBP could serve as a compelling substitute for neural networks, 

especially considering its ease of implementation and transparency.  

 



26 
 

Information Classification: General 

Notes 

This material is for informational purposes only.  The views expressed in this material are the 
views of the authors, are provided “as-is” at the time of first publication, are not intended for 
distribution to any person or entity in any jurisdiction where such distribution or use would be 
contrary to applicable law and are not an offer or solicitation to buy or sell securities or any 
product.  The views expressed do not necessarily represent the views of Windham Capital 
Management, State Street Global Markets®, or State Street Corporation® and its affiliates. 
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1 Choosing one model among many candidate models, or choosing to combine multiple models in an ensemble, 
can also be considered in this context by allowing some of the Θ or Λ values to govern the degree to which an 
individual model is used to form predictions within a broader multi-model definition of 𝑓.   
2 The network architecture we consider in the paper, in which the inputs for each calculation layer derive 
exclusively from the immediately preceding layer, is called a feed-forward network.   
3 For more details, see for example Hornik (1991).   
4 Czasonis, Kritzman, and Turkington (2024) compare relevance-based prediction to the high-complexity models 
(HCM) of Kelly, Malamud, and Zhou (2024), which are closely related to neural networks.  HCMs generate large 
numbers of nonlinear variable transformations as in a neural network with one hidden layer, but HCMs use 
random weights and bias terms rather than apply backpropagation to estimate those parameters.  The result is a 
(regularized) linear regression applied to the transformed variables, which is also equivalent to relevance-based 
prediction applied to all variables and all observations.  Czasonis, Kritzman, and Turkington show that with a large 
enough number of randomly sampled transformations, HCMs render predictions that place 100% weight on a 
single observation for each prediction task in the training sample.  Thus, while these predictions avoid amplifying 
noise with erratic extrapolations, they also fail to remove the noise that is already included in each training 
observation because the prediction is simply the training observation itself.  Likewise, neural networks can be 
viewed as complex nonlinear transformations of prediction inputs that are then used in a linear regression, owing 
to Jacot et al. (2018) who show the convergence of infinitely wide neural networks to kernel prediction using a 
Neural Tangent Kernel (NTK).  The NTK is equal to a transformation function that transforms a vector of prediction 
inputs into a vector of parameter gradients, capturing the sensitivity of that input’s prediction to each of the 
model’s parameters.  To the extent this approximation holds for a given (finite) neural network, we may view the 
model as a nonlinear transformation into a large set of variables that enter a (regularized) linear regression.  This 
relationship, together with the convergence of relevance-based prediction to linear regression, may offer 
additional insights into the nature of overfitting for neural networks.   
5 Note that the final training of the model on all available training observations does not have a validation sample, 
therefore we cannot use the early stopping rule based on the patience hyperparameter.  Instead, we perform the 
final training exercise using the number of epochs that were chosen by the optimal patience hyperparameter 
during validation.   
6 We use the currently popular “Adam” method introduced by Kingma and Ba (2014) to compute adaptive learning 
rates that differ across parameters and across training iterations based on a moving average of the estimated 
average and standard deviation of the derivative associated with each parameter.  The learning rate 
hyperparameter we evaluate is the initial learning rate for the Adam algorithm.   
7 We account for publication lags as necessary for the economic variables.  They represent the latest available 
values for each date. 
8 The time blocks include nearly equal numbers of observations, though some may have slightly more or fewer 
observations to facilitate allocation of the full observation set into five validation subsets with integer numbers of 
observations.  Due to the rolling nature of quarterly observations measured monthly, we exclude from each fold’s 
training sample any observations where 𝑌 values would overlap with those of the fold’s validation sample.  
Selecting consecutive time blocks as folds avoids problematic overlap more generally.   
9 The conventional default choice for the initial learning rate of the Adam algorithm is 0.001.  We allow for the 
possibility of selecting both lower and higher values.   
10 Minimum epochs allows for the possibility that early training can result in more erratic changes in validation loss 
than later training.   
11 We also compared predictions above and below the median, which produced similar spreads. 
12 It is important to remember that this measure of variable importance pertains to each individual prediction task.  
A positive value measures the extent to which groups of variables that include a given variable identify more 
robust patterns than the same groups without that variable.  A value of zero indicates that a variable only 
contributes noise, but that noise is benign due to a large sample size that diversifies away its effect on the 
prediction.  A negative value indicates that a variable contributes harmful noise that obscures the helpful patterns 
revealed by the other variables.   


